Development of a Single-Sided Nuclear Magnetic Resonance Scanner for the In Vivo Quantification of Live Cattle Marbling

نویسنده

  • Yoshito Nakashima
چکیده

Non-invasive in vivo marbling quantification helps owners to choose the optimum nutritional management for growing cattle and buyers to more precisely evaluate grown cattle at auctions. When using time-domain proton nuclear magnetic resonance (NMR) relaxometry, it is possible to quantify muscle and fat separately by taking advantage of the difference in the spin-spin relaxation time (T2) between water molecules in muscles and fat molecules, which would contribute to the non-invasive and objective determination of marbling scores. With this in mind, we developed a prototype NMR scanner (4.1 MHz for protons) using an original single-sided magnetic circuit and a plane radio frequency (RF) coil for use in the non-invasive quantification of water and fat in live cattle. The sensed region of the developed scanner is compact and almost cubical (19 × 19 × 16 mm3) while the investigation depth (the distance from the RF coil to the center of the sensed region) has been lengthened to 30 mm, which is sufficient for the in vivo trapezius muscle measurement of live cattle. Measurements of 17 samples of beef meat blocks kept at 39 °C were taken in a laboratory to successfully obtain the calibration lines used to convert the NMR signals into water and fat weight fractions at correlation coefficients in excess of 0.9. We also showed that each meat sample could be measured in about 10 s with a measurement error as small as approximately 10 wt%. Accordingly, we believe that our prototype scanner would be useful for in vivo marbling measurements of live cattle trapezius muscles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and Fabrication of a New Radiofrequency Planar microcoil for mini-Nuclear Magnetic Resonance

Introduction Radiofrequency planar microcoils are used to increase the resolution of magnetic resonance images of small samples. In this study, we aimed to design and fabricate a spiral planar microcoil constructed on a double-sided printed circuit board (PCB). It has four rings with an internal diameter of 241 microns tuned and matched at 63.8 MHz. Materials and Methods To achieve the maximum ...

متن کامل

The modeling of induced current density in eyes from static magnetic fields produce by MR scanner

Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...

متن کامل

Geometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes

Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...

متن کامل

Investigation of nuclear magnetic resonance (NMR) and Binding Energies Clonidine Drug-Carbon Nano Tube: A Theoretical Study

In this work, we have studied binding of Clonidine drug (C9H9Cl2N3) with zigzag single walled carbonnanotubes (SWCNT) (5, 0) by theoretical methods of theory using Gaussian 09 software package.Binding energies, NMR parameters and HOMO- LUMO Gap energy were calculated. Results frombinding energies indicate that it is possible thermodynamically to bind Clonidine drug to SWCNT.The calculated NMR p...

متن کامل

Computation of the NMR Parameters of H-Capped (10,0) and (5,5) Single-Walled SiC Nanotubes

Geometrical structure, nuclear magnetic resonance (N1,1It) chemical shielding tensors, and chemical shiftsof silicon and carbon nucler are investigated for twn infinite size zigzag and armchair single-walled siliconcarbide nanotabes (SiCNTs). Geometrical structures of SieNTs, Sit bonds and bond angles of St and Cvertices in both zigzag and armchair nanotubes, Indicate that bond lengths are appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2015